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Biological substrates for computation have been considered since be-
fore the advent of modern deterministic computers (McCulloch and Pitts
1943; von Neumann 1956; Bennett 1982). Technological advances in
measuring responses of cells to molecular signals have again raised the
question of how stochastic networks compute.

Signaling pathways enable living cells to process responses to stimuli
from the extracellular environment. The uncertainty of signal transmis-
sion in a single cell has prompted various research efforts to quantify how
much a cell knows about its environment. Advances in non-equilibrium
thermodynamics have arrived alongside analyses of biological signaling.
Often, models of signaling that consider only the timescale of molecular
fluctuations have been considered (Cheong et al. 2011; Barato, Hartich,
and Seifert 2014; Govern and ten Wolde 2014; Bo, Giudice, and Celani
2015; Hartich, Barato, and Seifert 2016, and others), especially in relation
to the bacterial chemotactic response (Lan et al. 2012).
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We suggest that an important timescale for biological signaling should
be on the order of gene expression (in the case of bacteria, potentially
multiple generations). Growing cells invest energy to grow and divide,
thereby diluting the results of previous computations. Because the rem-
nants of previous responses are reduced but not necessarily completely
erased, gradual dilution imparts a memory effect: a daughter cell is pre-
disposed to respond in a qualitatively similar manner to its mother cell.
Quantification of thermodynamic costs of molecular receptor signaling
on short timescales is interesting and enlightening about the extreme
limits of the biological cost of computation, but such energy use is ul-
timately minor compared to the massive costs of gene expression that
can arise as a result of such a signal. Here we seek to explore the effects
of those costs on cellular information processing.

We analyze the effect of cellular memory in a broad class of bacte-
rial information transfer systems, two-component system modules. Two-
component systems respond to information about modulation of the physic-
ochemical environment in and around the cell. Our analysis places non-
genetic intergenerational information transfer in a computational context
and raises the question of the appropriate scales for analyzing the ther-
modynamics of information in living systems.

Signaling Dynamics on the Timescale of Generations

Two relevant timescales of cellular signaling responses are molecular ki-
netic fluctuations and the timescale of gene expression programs. In a
bacterial cell, the timescale of protein turnover (and thus, shifts in gene
expression) is set by the generation time for the majority of protein types.
This is because most proteins are quite stable; the relevant quantity for
protein kinetic activity is concentration, and growth of the cell is the
fastest process that reduces the concentration. Considering a signal that
activates a transcription factor, the loss of the signal depends on the elim-
ination of the responding proteins. Thus, for the mean-field birth-death
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process with constant production α/τ and constant generation time τ , we
have dynamics of protein concentration x(t) as

x(t) = e−t/τ
(
x(0) +α(et/τ − 1)

)
and protein half-life after loss of signal is τ ln2, or about 70% of a cell
lifetime due to growth mediated dilution. Positive feedback on the acti-
vation signal can promote the transcriptionally activated state of the cell,
further exaggerating the effect. Many studies have explored the implica-
tions of such phenotypic memory, e.g. Nevozhay et al. (2012), Kaufmann
et al. (2007), Frick et al. (2015), Burrill et al. (2012), Inniss and Silver
(2013), Lambert and Kussell (2014), and Ray (2016).

To make the conditions underlying cost and benefit more concrete, we
introduce a common signaling pathway in bacteria, the two-component
system (TCS). Our goal here is to create a biologically realistic model that
allows numerical determination of thermodynamic and informational
quantities.

Models of Bacterial Two-Component Signaling

Two-component systems are a common sensing mechanism in bacteria
that have a notable level of conservation across phyla (Capra and Laub
(2012) review TCS evolution). Though many variations on the core motif
exist, the canonical TCS has a dimeric sensor histidine kinase (SHK) and
a cognate response regulator (RR). The sensor responds to stimuli by in-
creasing phosphorylated RR (Zschiedrich, Keidel, and Szurmant 2016).
Once phosphorylated, RR dimerization is stabilized, allowing it to be-
come a transcription factor for genes that are typically relevant to the
original stimulus. In many TCSs one of the operons regulated by the
RR is the TCS operon itself, providing feedback and potentially affecting
the regulatory activity of the TCS (Batchelor and Goulian 2003; Shin et
al. 2006; Shinar et al. 2007; Groban et al. 2009; Ray and Igoshin 2010).
TCS operons have strong gene expression polarity, an effect where ex-
pression level of the gene closest to the transcription start site is higher
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than expression of the subsequent gene(s). Because of this effect, [RR]
exceeds [SHK] by orders of magnitude to maintain a sensitive, yet re-
producible, response to stimuli (Batchelor and Goulian 2003; Aiso and
Ohki 2003). There are multiple distinct TCSs in most characterized bac-
terial species, each responding to distinct stimuli and inducing distinct
responses (Skerker et al. 2008; Laub and Goulian 2007; Rowland and
Deeds 2014). However, TCSs are integrated into global responses. For
example, phosphate limitation depends on a complex between multiple
sensors, including a TCS sensor called PhoR (Gardner et al. 2014). We
developed course-grained models for the TCS core motif that were pa-
rameterized to approximately represent a large class of them, but with
special reference to the PhoBR system in Escherichia coli, which has been
extensively studied (Hoffer et al. 2001; Gao and Stock 2013; 2015; 2017,
and references therein).

Course-Grained Kinetic Model

The sensor of a TCS is a dimer composed of two inactive monomers. It
matures into a dimeric form that is usually in the cell membrane and
senses changes in environment. The mature sensor has two reaction path-
ways: one that favors creating the active regulator, and one that favors
the inactivation of the regulator. The result is a dynamic balance be-
tween the competing processes of activation and deactivation. Which one
dominates at a given time depends on how much stress signal is present.
Figure 1a depicts this process. Conformational states in Figure 1a repre-
sent ensembles of protein structure conformations that are functionally
equivalent in terms of the reaction kinetics, which is why we refer to this
as a course-grained kinetic model. All of the depicted reaction rates fol-
low mass action kinetics at this scale.

We have inferred that the SHK component of E. coli PhoBR switches
between kinase-active and kinase-inactive conformational ensembles be-
cause phosphatase activity is unaffected in mutants lacking kinase activ-
ity (Carmany, Hollingsworth, and McCleary 2003). Because ATP or ADP

4



is bound in close proximity to the phosphorylated site on the SHK, the ki-
nase and phosphotransfer reactions are reversible. The step in a TCS that
truly dissipates energy is phosphatase activity: effectively irreversible de-
phosphorylation of a phosphorylated RR monomer.

The cytoplasm contains ATP at≈100-fold excess over ADP (Qian 2007).
Our model assumes that ATP quickly replaces ADP in the binding pocket
of SHK molecules. SHK reversibly binds its cognate RR. SHK is then ca-
pable of reversibly transferring the phosphoryl group to the RR.

In the limit of large numbers of molecules, the steady state fraction
of active SHK is k2

k2+k−2
, and in this model we can say that the rate of ki-

nase phosphorylation is k3k2
k2+k−2

. We can find the potential difference (Qian

2007), ∆µ = kbT ln J
+

J − , where J + represents the flux toward transcrip-

tionally active RRP2 ( ) , J − represents the reverse flux, toward the
inactive state, and kbT is the Boltzmann constant times the temperature.
In the equilibrium state, the two fluxes balance and we have detailed bal-
ance. Deviations of ∆µ from zero quantify how far out of equilibrium the
system is being driven by mass and energy input from the rest of the cell.

Our TCS model has the following mean-field fluxes:

J + = k1[SHKm]2 × k2k3

k−2 + k2
[SHK]× (k−5 + k4)[SHK.RRP ]× k6[RRP ]2

J − = k−1[SHK]× k−3[SHK.RRP ]× (k5 + k−4)[RRP ]× k−6[RRP2]

where [SHKm] represents SHK monomers, [SHK] is SHK dimers, [SHK.RRP ]
is the SHK + RR complex, [RRP ] is phosphorylated RR monomer, and
[RRP2] is transcriptionally active, phosphorylated RR dimer. We have
identified specific parameter values for each rate constant that reflect the
PhoBR system (Table 1).

In practice, living cells constantly produce ATP; the TCS has a con-
stant source of energy in ATP and a sink in ADP + Pi . The gene regu-
latory activity of the TCS, including its autoregulation, also contributes
to the total energy in the system. The steady state of a functional TCS is
intrinsically out of equilibrium, and at steady state ∆µ > 0.
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Connections to Cellular Physiology

Activation of a TCS upregulates a regulon - the set of genes that are the
target of the regulator. The cell pays a metabolic cost for the response, but
also benefits from the ameliorative activities of the regulon. For example,
in the case of phosphate starvation, the PhoBR TCS induces expression
of alkaline phosphatase (phoA), recovering phosphorus from phosphate
ester. However, the complete regulon of PhoBR consists of approximately
40 upregulated genes; the metabolic cost of expressing it is significant.
Lynch and Marinov (2015) give a sense of the scale of a regulon. They
estimated absolute the cost per gene to be 103−108 hydrolized phosphate
bonds in bacteria. This is likely to be the majority of the metabolic cost
of TCS activation.

We consider the fraction of the growth budget dedicated to the TCS
to be 1−φ(ρ) = 1−χ ρ

ρmax
where ρ represents the size of the total regulon,

ρmax is the maximal hypothetical induction, and χ is the maximal fraction
of the growth budget that the regulon can take. We have defined the
“growth budget” somewhat amorphously so that we can use 1 −φ(ρ) as
a multiplier to limit growth rate. Then we have a growth multiplier that
determines the growth benefit from expressing the TCS regulon, f (ρ)+fb.
fb is the basal growth rate without the benefit of the TCS signal while f (ρ)
is the ameliorative contribution of the regulon. We take a linear benefit,
f (ρ) = α ρ

ρmax
, where α + fb represents the maximal growth rate attainable

in a given condition without accounting for TCS regulon cost. The net
growth rate accounting for both cost and benefit is then

γ =
(
1−φ(ρ)

)(
f (ρ) + fb

)
=

(
1−χ

ρ

ρmax

)(
α

ρ

ρmax
+ fb

)
. (1)

The tradeoff effect naturally arises because this form is quadratic in ρ,
with a predicted optimal regulon size at the point where ∂γ

∂ρ

∣∣∣
χ,α,fb ,ρmax

= 0

which gives ρopt = ρmax(α+fbχ)
2αχ .

The situation is not that simple, however, because both α and fb de-
pend on the same conditions that determine the activation state of the
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TCS, kinetic parameter k2. The relationship could potentially take a va-
riety of forms. We estimated the relationship empirically: biomass in a
chemostat experiment in an E. coli strain that has had the phoB gene (re-
sponse regulator) deleted (Marzan and Shimizu 2011). This strain does
not produce the TCS regulon. Its steady state biomass in a chemostat
at various levels of phosphate starvation therefore gives fb for the case
of the PhoBR system. The biomass data happen to fit an inverse logis-
tic function with r2 > 0.999. Assuming that TCS activation rate, k2, is
proportional to the degree of phosphate starvation in PhoBR, we have

fb =
afit

bfit + e−cfit+k2
.

α+fb is the maximum possible recovery from the signal-induced growth
rate: with γu as the upper limit of the growth rate and ε (≤ 1) as the effi-
ciency of the regulon to recover growth rate,

α + fb = ε
(
γu −

afit

bfit + ek2−cfit

)
+

afit

bfit + ek2−cfit
.

For the PhoBR system, we have a growth model with free parame-
ters ε, γu , χ, and ρmax. The same study that gave data for the logistic
fit of fb (Marzan and Shimizu 2011) also measured relative expression of
selected PhoBR regulon genes in wild-type cultures. From this, we es-
timated χ ≈ 0.37. We assumed that the genes upregulated by the TCS
were mostly capable of reducing phosphate stress (ε = 0.95), and that
the growth medium without phosphate starvation is relatively favorable
(γu = 0.0004 /s = 1.44 /h). The hypothetical maximum induction of the
regulon (ρmax = 150µM) was set by calibration with the average regulon
transcription and translation rates, ktxnR and ktsnR (Table 1).

Using the growth model, we created two multiscale models of a TCS
embedded in cellular physiology - one representing the average of many
cells, and a stochastic simulation that tracks the dynamics of signaling in
single cells. We first describe the mean-field model TCS dynamics. We
then use this to develop a stochastic model. We calibrate both models
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with the mean-field model, explore average responses with it, and then
use the stochastic model to simulate the dynamics of signal transfer as
the population recovers from signal loss.

Mean-Field Model

We represent two types of processes: reversible chemical reactions, and
irreversible reactions that represent dissipative processes such as tran-
scription, translation, cellular growth, and in the TCS, the irreversible
step in hydrolysis of ATP—phosphatase activity of SHK. We allowed tran-
scription and translation to be governed by mass-action kinetics. The
complete model is a set of differential equations with 12 variables: bi-
cistronic messenger RNA (mRNA), monocistronic RR mRNA, downstream
regulon mRNA, downstream regulon protein, and the species represented
in Figure 1a.

The equations are omitted for brevity, but all interactions are assumed
mass-action except for gene regulation processes, which take Michaelis-
Menten form with Vmax given by ktxn (TCS operon) or ktxnR (regulon oper-
ons) and Km given by Kmtxn (Table 1). (We assume that most promoters
of the TCS regulon are calibrated to typical concentrations of RRP2, and
allow the same Km for the TCS and all regulon promoters). mRNA is un-
stable and actively degraded by cells; degradation of mRNA is taken to
be a mass-action process. Based on Aiso and Ohki (2003), our model has
an unstable bicistronic TCS mRNA species capable of initiating trans-
lation of both RR and SHK, and a more stable monocistronic mRNA
species that only initiates translation of RR. Dilution of molecules de-
pends on the growth model above: loss of protein has a rate γ[Protein] =(
1 −φ(ρ)

)(
f (ρ) + fb

)
× [Protein] and loss of mRNA has a rate (kdegRNA +

γ) × [mRNA] for degradation rate constants that depend on the specific
mRNA species.
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Stochastic Model

The stochastic model is based on the mean-field model with the follow-
ing additions. Reactions occur in individual cell agents that have a vol-
ume growing according to the growth model described above, based on
Bandyopadhyay, Wang, and Ray (2018). Increments of stochastic simula-
tion occur at approximately constant volume intervals, then the volume
is updated based on the resulting growth rate. Increments in reaction
volume affect any bimolecular interactions (Gillespie 1976). We chose a
quasi-constant volume interval of 1 s, which is less than the expected time
to add a single phospholipid in a cell that is growing relatively quickly.

For the stochastic growth model, we assume the mean-field growth
model holds with the exception of regulon fluctuations. The downstream
regulon of a TCS potentially undergoes significant fluctuations that are
entrained to RRP2 fluctuations. However, there is still an independent
stochastic component: between the expression of multiple genes, upward
fluctuations in some gene expression may be counterbalanced by down-
ward fluctuations in other gene expression. We therefore represented
gene expression from n = 40 independent loci, all assumed to have iden-
tical binding and gene expression kinetics, producing mRNA into a com-
mon pool that produces a common regulon.

In the stochastic model, we represent explicit promoters for the reg-
ulated genes, with binding/unbinding and irreversible transcription ini-
tiation events. We set the binding constants and transcription initiation
constants to be equal to the Michaelis-Menten form of the mean-field
model (Table 1).

Each cell agent grows at a rate set by the growth model (γ), and when
the initial volume has been doubled, it divides, partitioning all non-
DNA species into two daughter cells with a binomial distribution. Jun
et al. (2018, and references therein) suggest that the “adder” principle
is an excellent phenomenological representation of cell volumes during
the E. coli cell cycle: a constant cell volume is added before division. In
our model, each cell agent has a volume of 1 femtoliter and doubles to 2
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femtoliters before division. Promoters/DNA are all deterministically in-
herited into both daughter cells. The cellular simulation is implemented
in Python, with the stochastic simulations run in StochKit using GillesPy
(Abel et al. 2016) to interface the Python cell script with the stochastic
simulations.

Results

Average Cellular Growth and Signal Dynamics

Simulations using the mean field model revealed the effects of induction
and shut-off of a TCS in E. coli (Figure 2). The model suggests that in-
termediate levels of induction have a slightly lower growth rate than the
fully induced system when the stress becomes more severe (Figure 2c).
The reason for the effect is clear looking at the model variants lacking
transcriptional feedback with constant low and high TCS gene expres-
sion (gray lines in Figure 2). The system with transcriptional feedback
switches from being nearly equivalent to the low-TCS-expression feed-
backless case to being nearly equivalent to the high-TCS-expression feed-
backless case. It is the transcriptional feedback that allows the system
to adapt to higher signal levels. Constant high TCS expression causes
grossly more ATP hydrolysis (which is the same as the phosphatase flux,
k−3 × ([SHKa.RRP ] + [SHK.RRP ])) than the case with low expression or
transcriptional feedback (Figure 2d). This demonstrates a tradeoff be-
tween cost and benefit: in the autoregulated TCS, it is possible to sacrifice
large investments in stress responses, at the cost of slightly lower growth
rate unless the stress becomes severe.

Our model predicts that the TCS has a potential difference ∆µ ≈ 15kbT ,
varying slightly depending on signal level (Figure 2b). The same is not
true for the ATP dissipation rate of the TCS, which increases dramatically
at the largest induction levels (Figure 2d).

We find that shutting off the signal (initial conditions at the k2 = 10
steady state, instantaneously switched to k2 = 10−3) reveals three relevant
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timescales (Figure 2e-f). On the generational timescale,� 1000s, the reg-
ulon is diluted and normal growth resumes. Loss of TCS transcriptional
activity (RRP2) occurs at a faster rate. At very short timescales, the sensor
shuts off to an intermediate quasi-steady state before being driven even
lower by the effects of growth dilution (Figure 2f).

Intergenerational Signal Transfer in a Two-Component System

The stochastic cell growth framework captures the rate of signal loss and
the interaction between cell division and dynamics of the signal (Fig-
ure 3). We used the same switch from high to low signal as above. Fig-
ure 3a confirms the mean-field results that signal shutoff is faster than
loss of the regulon. Note the half life of RRP2 being less than half of a gen-
eration while the regulon half-life is more than one generation, where a
purely growth-diluted molecule half-life would be ≈ 70% of a generation.
Both species follow nearly deterministic trajectories. The same is not true
for two-component system total protein expression, where protein dilu-
tion is highly lineage dependent (Figure 3b). The difference in timescales
between the signal shutoff and the residual response illustrates an inter-
generational memory effect.

Discussion

It is increasingly feasible to model timescales of cellular information pro-
cessing that are relevant to fitness and evolution without them being
oversimplified toy models. The disadvantage of this approach is the loss
of generality: the necessary quantity of empirical information requires
that they simulate a specific system. This is a small problem in the face
of ever-increasing high-resolution physiological data. The ability to ac-
curately capture interactions between the short timescales of molecular
fluctuations and the global physiological shifts in a cell is an unmistak-
able advantage. Here, we have demonstrated how we can use such mod-
els to address questions of energetics and cellular information processing
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and have set up a framework for more thorough studies of information
flow in the future.

Our model of two-component signaling suggests that the vast major-
ity of metabolic (ATP) cost lies in the production of the regulon, which
has a higher ATP investment compared to the signaling system itself.
Monte Carlo sampling of the TCS kinetic parameters shows that our em-
pirical parameter set lies in the middle of possible responses (not shown).
While it is not precisely quantitative of any particular system, the numer-
ical results are reliable.

In the intact system, the constant source of ATP along with material
influx of TCS proteins maintains the TCS out of thermodynamic equi-
librium in all conditions (Figure 2b). At the same time, the system is
driven by global physiological variables coupled to stochasticity effects,
which diversifies the level of memory in a lineage-dependent manner:
some cells and all of their daughters undergo rapid loss of TCS proteins
while other cells maintain a longer-lived high expression level that may
be metastable (Figure 3).
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Table 1. Calibrated parameters. PTCS refers to the promoter of the two-component
system operon.

Parameter Estimated Value Notes/Reference
k1 10 (µM s)−1 Fast SHK dimerization
k−1 0.00001 s−1 Rare SHK de-dimerization
k2 Conditional, s−1 k2 ∈ [0.001,10]
k−2 0.1 s−1 Assumed fast
k3 0.0004 (µM s)−1 Model calibration
k−3 0.0087 s−1 (Gao and Stock 2013)
k4 & k−5 1 s−1 Model calibration
k−4 & k5 0.036 (µM s)−1 (Gao and Stock 2013)
k6 1 (µM s)−1 Model calibration
k−6 4 s−1 (Mack, Gao, and Stock 2009)
ktxnb 0.00001 s−1 Model calibration
ktxn 0.00025 s−1 Model calibration

ktxni 0.15 s−1 TCS transcription initiation
rate when RRP2 is bound

Kmtxn 2.5 µM
PTCS half-sat;
(Gao and Stock 2015)

kpb 1.66 (µM s)−1 PTCS binding rate;
(Elf, Li, and Xie 2007)

kpu 3.86 s−1 PTCS unbinding rate;
inferred from Kmtxn & kpb

kdegb 0.027 s−1 (Aiso and Ohki 2003)
kdegr 0.0044 s−1 (Aiso and Ohki 2003)
ktsn 0.05 s−1 Model calibration
χ 0.37 (Marzan and Shimizu 2011)
afit ≈ 1.123× 10−4 ”
bfit ≈ 1.77 ”
cfit ≈ 3.75 ”
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Figure 1. Course-grained multiscale model of a two-component system (TCS). a.
ATP associates with the sensor histidine kinase (SHK), , along with fast interchange

between ADP and ATP. External signal stimulates the SHK conformational switch
(k2). Physical interaction between SHK and response regulator (RR) allows

phosphotransfer to RR, stablizing the dimeric RRP2, , an active transcription
factor. SHK phosphatase activity is an ATP dissipative step. b. Nested feedback loops

involved in signals from TCSs. Signal stimulates production of RRP2, , which
modulates a regulon (upregulation of several genes). Often, transcription of the TCS

operon itself is induced: feedback that may affect the signal level. The regulon
typically counteracts the signal, another feedback loop. Expression of the regulon

entails a metabolic investment, reducing the fraction of resources devoted to growth.
Growth dilutes the molecules, affecting bimolecular reaction propensities. The TCS

maintains responsiveness by constantly dissipating ATP energy, but the major cost of
the TCS during the signal is in the regulon.
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Figure 2. Predicted steady state and dynamical physiological outcomes of activating
a two-component system (TCS), with parameters calibrated to represent the E. coli

PhoBR system having a regulon containing approximately 40 genes. Line styles
represent the wild-type system with transcriptional feedback to the phoBR operon

(black solid), and transcriptional feedbackless system with basal (gray solid) or
maximal (gray dashed) expression. a. The level of induction is related to the size of
the signal– in this case phosphate limitation. b. Potential difference ∆µ in units of
kbT . c. TCS induction recovers a fraction of the growth rate lost to the stress

condition. Black dotted line represents the expected growth rate in the absence of the
TCS response. d. Rates of ATP hydrolysis by the TCS

(k−3([SHKa.RRP ] + [SHK.RRP ])) and TCS operon synthesis (ktxnb + ktxn[RRP2]
Kmtxn+[RRP2] ).

Black dotted line represents the TCS operon synthesis rate. e. Dynamics of growth
rate and biomass on recovery from fully-induced to uninduced conditions. Black line,

growth rate; gray line, biomass. Vertical line: the first generation of growth. Dots
represent subsequent generations. f. Dynamic loss of TCS activity. Black line,

regulon. Gray line, SHKa. Dashed gray, RRP2.
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Figure 3. Stochastic dynamics of intergenerational signal loss. The simulation was
started in a high activated steady state (k2 = 10) and allowed to relax to an inactive
state (k2 = 10−3). a. Levels of the two-component system (TCS) regulon (black) and

transcriptionally active regulator RRP2 (gray) follow different timescales. Cell
division times are evident. These results superimpose the levels in all of the cell agents

in the simulation. The results closely follow the expected deterministic mean. b.
Levels of the two-component system proteins display striking heterogeneity that arises

at cell birth. Different individual cells are represented by different shades of gray or
black. Some cells are nearly to basal levels of the protein while others still have

substantial residual protein several generations later.
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